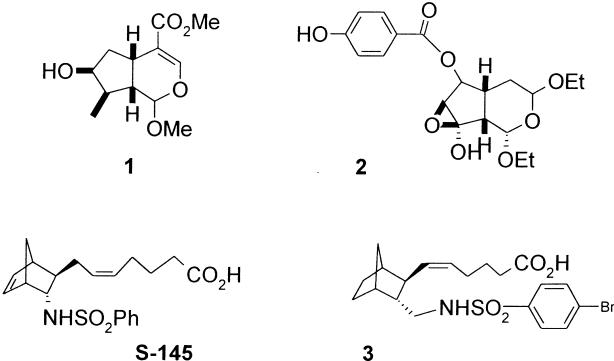


Enzyme catalysed kinetic resolution of racemic methyl 3-acetyl bicyclo [2.2.1] hept-5-ene-2-carboxylate using pig's liver esterase[†]

Manouchehr Mamaghani* and Alireza Alizadehnia

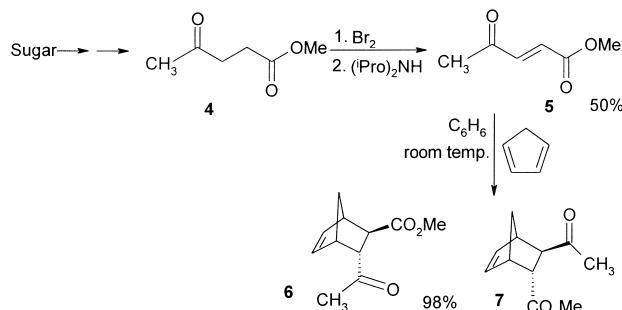

Chemistry Department, Faculty of Sciences, Guilan University, PO Box 1914, Rasht, Iran

Racemic methyl 3-*endo*-acetyl bicyclo[2.2.1]hept-5-ene-2-*exo*-carboxylate and methyl 3-*exo*-acetyl bicyclo[2.2.1]hept-5-ene-2-*endo*-carboxylate were prepared (as a 1:1 mixture in 98% yield) from (E)-methyl 4-oxo-2-pentenoate, using Diels–Alder methodology. The mixture was separated chromatographically and resolved into the enantiomers by pig liver esterase (PLE) with low to high ee's (98%).

Keywords: kinetic resolution, pig liver esterase

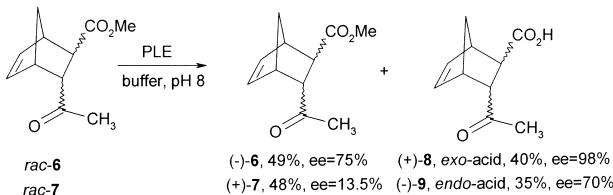
Homochiral compounds belonging to the bicyclo[2.2.1]heptane series are useful synthetic building blocks for terpenoid natural products such as 1-*O*-methyl loganin aglucone (**1**), and specionin (**2**)¹. Several pharmaceutical products possess structures related to this unit,² among which are the carbocyclic analogues of prostaglandin endoperoxides. These include recently discovered drugs such as S-145 which antagonises the action of thromboxane (TXA₂), and compound **3** as a potent inhibitor of PGE₂. The biological activity of these compounds depends on the absolute and relative configuration of four chiral centres present in these molecules. For example the *d* isomer of S-145 was found to be several times more potent than *l* isomer, exhibiting a higher binding affinity to the receptor.³ Therefore it would be desirable to obtain new homochiral functionalised bicyclo[2.2.1]heptane intermediates which could be further elaborated to structures analogous to S-145 and **1–3**. In this respect we have exploited the catalytic potential of PLE for the optical resolution of new products with bicyclo[2.2.1]heptane skeleton.

Several chemical and enzymatic syntheses of chiral norbornene derivatives have been reported.⁴ As a continuation of our studies in preparation of optically active functionalised bicyclo[2.2.1]heptenes,⁵ with the aim of their utilisation as chirons in biologically interesting cyclopentenoids, we describe here the synthesis and kinetic resolution of racemic methyl 3-*endo*-acetyl bicyclo[2.2.1]hept-5-ene-2-*exo*-carboxylate (**6**) and methyl 3-*exo*-acetyl bicyclo[2.2.1]hept-5-ene-2-*endo*-carboxylate (**7**) using pig liver esterase as a chiral catalyst.


Scheme 1

* To receive any correspondence. E-mail: M-chem41@cd.gu.ac.ir

† This is a Short Paper, there is therefore no corresponding material in *J Chem. Research (M)*.


The adducts **6** and **7** were prepared from easily available (E)-methyl 4-oxopentenoate (**5**) (prepared by applying the method used for the preparation of (E)-ethyl levulinate⁶ on methyl levulinate **4**) and cyclopentadiene by Diels–Alder methodology in 98% yield (*endo/exo* ratio: ~1:1 by GC and ¹H NMR) (Scheme 2). Conventional separation of the adducts by chemical method using iodolactonisation,^{5a} appeared impossible because of a haloform reaction of the acetyl group at both isomers. Therefore separation was carried out chromatographically using preparative thin layer chromatography (TLC) (ether/ petroleum ether: 1/3) which furnished the desired adducts pure.

Incubation of racemic *exo*-ester **6** with PLE (0.1 M phosphate buffer solution, pH=8, room temperature) immediately initiated the hydrolysis process. However, after 1.83 hours (50% conversion) the rate of the reaction considerably decreased. Work up led to the isolation of unreacted enantiomer (–)-**6**, $[\alpha]_D^{25} = -84.7^\circ$ (c 1.42, MeOH), ee=75% and *endo*-3-acetyl bicyclo[2.2.1]hept-5-ene-2-*exo*-carboxylic acid (+)-**8** which showed optical rotation of $[\alpha]_D^{20} = +106.2^\circ$ (c=1.1, MeOH) corresponding to ee=98%, *E*=460. A sample of (+)-**8** was transformed into its methyl ester by treatment with ethereal solution of diazomethane, $[\alpha]_D^{20} = +110.5^\circ$ (c 0.80, MeOH), ee=98%.

Scheme 2

Incubation of racemic *endo*-ester **7** with PLE under our standard condition led to a relatively much slower reaction in contrast to *exo*-ester **6**, reaching to 50% conversion after 11.5 hours. Conventional work up provided the unreacted enantiomer of the *endo*-ester (+)-**7**, $[\alpha]_D^{20} = +15^\circ$, ee=13.5% and *endo*-acid (–)-**9**, $[\alpha]_D^{20} = -75^\circ$, ee=70%, *E*=12. A sample of this acid was also methylated by ethereal solution of diazomethane to give the related methyl ester, $[\alpha]_D^{20} = -78^\circ$, ee=70%. Enantiomeric excesses of all optically active products were established with ¹H NMR spectroscopy (400 MHz) using Eu(hfc)₃.

Scheme 3

In this study it was found that, the *exo*-carboxylate function is hydrolysed considerably faster than *endo*-ester function. These results conform to the results obtained for corresponding norbornane esters^{4c} and also fit Tamm's PLE-substrate model.⁷ We further conclude that the high enantioselectivity (ee=75–98%) observed in the resolution of *exo*-ester adduct (**6**), makes this substrate a valuable candidate for further elaboration to analogous structures presented in Scheme 1.

Experimental

General: Chemicals were purchased from Merck and Fluka. Melting points were measured with ElectroThermal melting point apparatus and are uncorrected. IR spectra were determined on a Shimadzu IR-470 spectrometer. ¹H NMR spectra were recorded on a Bruker AC, FT-NMR (80 MHz) in deuteriochloroform (CDCl₃) with tetramethylsilane (TMS). Exact molecular weight was measured on a Bruker double focusing VG 7070 E mass spectrometer. Preparative thin layer chromatography (TLC) was carried out on plates prepared from Merck Kieselgel 60 H, F₂₅₄, Art No 7730. GC was carried out using Buck Scientific 910 (capillary column, MXT-5, 15 m). Optical rotations was measured by Atago (Polax) polarimeter. All solvents used were dried and distilled according to standard procedures.

(E)-methyl 4-oxo-pentenoate (5): A solution of bromine in CHCl₃ (26 ml) was added at room temperature for 1 hour to a magnetically stirred solution of methyl levulinate (26.1 g, 0.20 mol) (prepared from levulinic acid obtained from sugar⁸) in CHCl₃ (148 ml) under an argon atmosphere. Coagulation of the mixture occurred. The mixture was cooled in an ice bath and diisopropyl amine (65 g, 0.64 mol) was added through a dropping funnel in 1 hour. Stirring was continued for another 1 hour at this temperature. The mixture was washed with HCl (1N) and brine. The organic phase was dried (MgSO₄), filtered and evaporated in vacuum. The residue was distilled under vacuum (97–100°C/30 mmHg) to provide (E)-methyl 4-oxopentenoate (12.9 g, 0.10 mol) in 50% yield, m.p. 58–59°C (after recrystallisation from diethyl ether) (lit.⁹ m.p. 54–56°C). The structure of the product was confirmed by spectroscopic analysis. ¹H NMR (CDCl₃): δ 6.87 (d, J=16.1 Hz, 1 H), 6.47 (d, J=16.1 Hz, 1 H), 3.64 (s, 3 H), 2.18 (s, 3 H) ppm., IR (KBr), 3050, 1720, 1670, 1640, 1320, 1270, 1200, 1180 cm⁻¹.

Preparation of methyl 3-endo-acetyl bicyclo[2.2.1]hept-5-ene-2-exo-carboxylate (6) and methyl 3-exo-acetyl bicyclo[2.2.1]hept-5-ene-2-endo-carboxylate (7): A solution of freshly distilled cyclopentadiene (1.6 g, 24.2 mmol) in benzene (7 ml) was added to a magnetically stirred solution of (E)-methyl 4-oxo-2-pentenoate (2 g, 15.6 mmol) in benzene (5 ml) at room temperature in 15 min. Stirring was continued at room temperature for 2 hours. The solvent was evaporated in a rotary evaporator to give a mixture of methyl 3-endo-acetyl bicyclo[2.2.1]hept-5-ene-2-exo-carboxylate and methyl 3-exo-acetyl bicyclo[2.2.1]hept-5-ene-2-endo-carboxylate adducts (2.97 g, 15.3 mmol) (*endo/exo* ~1:1, by GC, ¹H NMR) in 98% yield. The mixture was separated by preparative TLC (ether/ petroleum ether, 1/3) to furnish pure methyl 3-endo-acetyl bicyclo[2.2.1]hept-5-ene-2-exo-carboxylate (**6**) (1.2 g, 6.2 mmol), ¹H NMR (CDCl₃): δ 5.95 (dd, J=5.5, 3.1 Hz, 1 H), 5.69 (dd, J=5.5, 2.5 Hz), 3.5 (s, 3 H), 3.1 (m, 2 H), 2.9 (s, 1 H), 2.6 (d, J=4.0 Hz, 1 H), 1.96 (s, 3 H), 1–1.6 (m, 2 H) ppm., IR (neat): 3050, 1730, 1720, 1690, 1650, 1310, 1270, 1240, 1210 cm⁻¹, EI/HRMS: M⁺, 194.09460 ± 0.00075 [calc. for C₁₁H₁₄O₃: 194.09429] and methyl 3-exo-acetyl bicyclo[2.2.1]hept-5-ene-2-endo-carboxylate (**7**) (1.1 g, 5.7 mmol), ¹H NMR (CDCl₃): δ 6.0 (dd, J=5.3, 3.2 Hz, 1 H), 5.75 (dd, J=5.3, 2.7 Hz), 3.3 (s, 3 H), 3.1 (t, J=4.4 Hz, 1 H), 2.93 (br. s, 1 H), 2.77 (br. s, 1 H), 2.55 (d, J=4.0 Hz, 1 H), 1.97 (s, 3 H), 0.8–1.2 (m, 2 H) ppm., IR (neat): 3050, 2950, 1720, 1700, 1640, 1300, 1260, 1210, 1180 cm⁻¹, EI/HRMS: M⁺, 194.09470 ± 0.00070 [calc. for C₁₁H₁₄O₃: 194.09429].

General procedure for enzyme catalysed kinetic resolution of the ester adducts: A suspension of ester adducts in a 0.1 M phosphate

buffer solution (10 ml/mmole substrate) at pH=8, was incubated with PLE (60 µl/mmole) at 28°C. The pH was maintained by continuous addition of 0.1 M NaOH using a burette. After reaching an appropriate reaction conversion the reaction was stopped by adding aqueous sodium carbonate (20%) until pH=10 was reached. The aqueous reaction mixture was extracted with chloroform and the combined organic extracts were dried (MgSO₄) and evaporated under vacuum to give the unreacted ester product.

The remaining aqueous layer was acidified by dilute HCl (10%) to pH=3 and extracted with chloroform. The combined chloroform extracts were dried (MgSO₄) and evaporated under vacuum to give the related acid a product.

Kinetic resolution of racemic methyl 3-endo-acetyl bicyclo[2.2.1]hept-5-ene-2-exo-carboxylate (6): The adduct (±)-**6** (0.53 g, 2.73 mmol) was subjected to PLE catalysed resolution using the general procedure. The reaction was stopped at 50% conversion, after a reaction time of 1.83 hours, to give the unreacted (–)-methyl 3-endo-acetyl bicyclo[2.2.1]hept-5-ene-2-exo-carboxylate (–)-**6** (0.26 g, 1.34 mmol) (recrystallised from *n*-hexane), yield 49%, m.p. 47–50°C, [α]_D²⁵ = –84.7° (c 1.42, MeOH), ee=75% (the ¹H NMR and IR of this product was the same as starting racemic ester) and (+)-3-endo-acetyl bicyclo[2.2.1]hept-5-ene-2-exo-carboxylic acid (+)-**8** (0.19 g, 1.1 mmol), yield 40%, m.p. 126–128°C, [α]_D²⁵ = +106.2° (c 1.1, MeOH), ee=98%, E=460, ¹H NMR (CDCl₃): δ 11.2 (s, 1 H), 6.0 (dd, J=5.6, 3.1 Hz, 1 H), 5.8 (dd, J=5.6, 2.5 Hz, 1 H), 3.0–3.2 (m, 3 H), 2.63 (dd, J=4.0, 1.3 Hz, 1 H), 1.96 (s, 3 H), 1.1–1.6 (m, 2 H) ppm., IR (KBr): 3500–2500, 1685, 1645, 1410, 1360, 1260, 1200, 1160, 740 cm⁻¹.

Kinetic resolution of racemic methyl 3-exo-acetyl bicyclo[2.2.1]hept-5-ene-2-endo-carboxylate (7): The adduct (±)-**7** (0.27 g, 1.40 mmol) was incubated with PLE using the general procedure. The reaction was stopped at 50% conversion, reaction time 11.5 hours, to provide the unreacted (+)-methyl 3-exo-acetyl bicyclo[2.2.1]hept-5-ene-2-endo-carboxylate (+)-**7** (0.13 g, 0.67 mmol), yield 48%, as a colourless liquid, [α]_D²⁵ = +15° (c=1.67, MeOH), ee=13.5% (the ¹H NMR and IR of this product was the same as starting racemic ester) and (–)-3-exo-acetyl bicyclo[2.2.1]hept-5-ene-2-endo-carboxylic acid (–)-**9** (0.09 g, 0.49 mmol), yield 35%, m.p. 89–92°C, [α]_D²⁵ = –75° (c=0.13, MeOH), ee=70%, E=12, ¹H NMR (CDCl₃): δ 9.95 (s, br, 1 H), 6.12 (dd, J=5.8, 3.0 Hz, 1 H), 6.03 (dd, J=5.8, 2.4 Hz, 1 H), 3.28 (t, J=3.7 Hz, 1 H), 3.1 (m, 1 H), 2.9 (s, 1 H), 2.62 (d, J=4.5 Hz, 1 H), 2.1 (s, 3 H), 1.28 (m, 2 H) ppm., IR (KBr), 3500–2500, 1680, 1420, 1360, 1300, 1275, 1180, 720 cm⁻¹.

Financial support for this work by the research council of Guilan University is gratefully acknowledged.

Received 30 January 2002; accepted 5 March 2002
 Paper 02/1192

References

- 1 J.V. Eycken, M. Vandewalle, G. Heinemann, K. Laumen, M.P. Schneider, J. Kredel and J. Sauer, *J. Chem. Soc. Commun.*, 1989, 306.
- 2 (a) R. Casas, J. Ibrazo, M. Jimenz and R.M. Ortuno, *Tetrahedron: Asymmetry*, 1993, **4**(4), 669; (b) R.C. Larock, M.H. Hsu and K. Narayama, *Tetrahedron*, 1987, **43**, 2891.
- 3 (a) M. Ohatani, T. Matsuura, F. Watanabe and M. Narisada, *J. Org. Chem.*, 1991, **56**, 2122; (b) K. Hanasaki, T. Nagasaki and H. Arita, *Biochem. Pharmacol.*, 1989, **38**, 2007.
- 4 (a) S. Takano, A. Kurotani and K. Ogasawa, *Synthesis*, 1987, 1075; (b) T. Harada, I. Wada And A. Oku, *J. Org. Chem.*, 1989, **54**, 2599; (c) A.J.H. Klunder, F.J.C. Van Gastel and B. Zwanenburg, *Tetrahedron Lett.*, 1988, **29**, 2697; (d) P.P.M.A. Dols, A.J.H. Klunder and B. Zwanenburg, *Tetrahedron*, 1994, **50**, 8515.
- 5 (a) M. Mamaghani and A. Namazi, *J. Sci. I. R. Iran* 1999, **10** (3), 169; (b) M. Mamaghani, A.J.H. Klunder and B. Zwanenburg, *J. Sci. I. R. Iran* 2000, **11**(3), 205; (c) M. Mamaghani, *Tetrahedron*, 2002, **57**(1), 147.
- 6 J.E. Mc Murry and L.C. Blaszcak, *J. Org. Chem.*, 1974, **39**, 2217.
- 7 P. Mohr, N. Waespe-Sarcevic, C. Tamm, K. Gawronska and J.K. Gawronski, *Helv. Chim. Acta*, 1983, **66**, 2501.
- 8 B.F. McKenzie, *Organic Synth. Coll. I*, 335.
- 9 P.F. Schuda, C.B. Ebner and S.J. Potlock, *Synthesis*, 1987, 1055.